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NONLINEAR EFFECTS OF NANOPARTICLES: BIOLOGICAL VARIABILITY
FROM HORMETIC DOSES, SMALL PARTICLE SIZES, AND DYNAMIC
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� Researchers are increasingly focused on the nanoscale level of organization where bio-
logical processes take place in living systems. Nanoparticles (NPs, e.g., 1-100 nm diameter)
are small forms of natural or manufactured source material whose properties differ
markedly from those of the respective bulk forms of the “same” material. Certain NPs have
diagnostic and therapeutic uses; some NPs exhibit low-dose toxicity; other NPs show abil-
ity to stimulate low-dose adaptive responses (hormesis). Beyond dose, size, shape, and sur-
face charge variations of NPs evoke nonlinear responses in complex adaptive systems. NPs
acquire unique size-dependent biological, chemical, thermal, optical, electromagnetic,
and atom-like quantum properties. Nanoparticles exhibit high surface adsorptive capaci-
ty for other substances, enhanced bioavailability, and ability to cross otherwise imperme-
able cell membranes including the blood-brain barrier. With super-potent effects, nano-
forms can evoke cellular stress responses or therapeutic effects not only at lower doses
than their bulk forms, but also for longer periods of time. Interactions of initial effects and
compensatory systemic responses can alter the impact of NPs over time. Taken together,
the data suggest the need to downshift the dose-response curve of NPs from that for bulk
forms in order to identify the necessarily decreased no-observed-adverse-effect-level and
hormetic dose range for nanoparticles.
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INTRODUCTION

Nanoparticles (NPs) are very small particles of material that may be
natural or manufactured in origin (Buzea et al., 2007; Ju-Nam and Lead,
2008; Merisko-Liversidge and Liversidge, 2011; Roduner, 2006). Sizes typ-
ically range from a fraction of one nanometer (nm) in diameter on at
least one side up to 100 nanometers (European Commission on the
Environment, 2011; International Organization for Standardization,
2005). Although submicron particles between 100-1000 nanometers in
size have some advantages toward improving drug delivery (Oyewumi et
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al., 2010; Stovbun et al., 2012; Wong, 2011), much of the focus of research
interest in NPs has been on particles whose size falls below 100 nm. Their
small size leads to a large surface area to volume ratio, resulting in varia-
tions of properties that differ markedly from those of bulk forms of the
“same” material (Buzea et al., 2007; Cao and Wang, 2011; Roduner, 2006).

The range of these altered effects encompasses electromagnetic, ther-
mal, optical, biochemical, and even quantum (in quantum dots, at
extremely small particle sizes, typically ranging from 1-10 nm, perhaps as
high as 30 nm) properties. Smaller NPs readily cross cell membranes and
translocate around the body via blood and lymph (Buzea et al., 2007).
Some NPs such as nano-silica or nano-silicon (Demento et al., 2009;
Mahony et al., 2013; Petkar et al., 2011; Wang et al., 2012b) and nano-lipid
carriers can also serve as immune adjuvants and markedly lower the
amount of antigen needed to mount a response in the immune system,
e.g., in one study to a dose as low as 2.5 nanograms (Bershteyn et al., 2012;
Diwan et al., 2004).

In effect, nanoparticles are often biologically super-potent forms of
their source material. For instance, the NP form of an antiretroviral drug
in the 3 nanomolar range produced up to a 50-fold reduction in the 50%
inhibitory concentration needed, compared with free drug doses
(Chaowanachan et al., 2013). Intermittent treatment with the nano-form
of the immunosuppressant drug mycophenolic acid improves murine
allograft survival time at a dose 1000-fold lower than the bulk form con-
ventional drug (Shirali et al., 2011). By extension, the therapeutic
hormetic nanoparticle dose of an otherwise highly toxic source material
might fall below the nanomolar level (Raja et al., 2013), e.g., down to
picomolar or even lower levels. Some studies further indicate the possi-
bility of sinusoidal hormetic dose-response curves in such a situation
(Malarczyk et al., 2011).

Contemporary nanotechnology can generate manufactured nanopar-
ticles in either a top down (e.g., milling, grinding) or bottom up (e.g.,
nano-silica self-assembly on a structural template) manner (Cho et al.,
2011; Cumbo et al., 2013; Ju-Nam and Lead, 2008; Kiel et al., 2012;
Merisko-Liversidge and Liversidge, 2011). Reagents and manufacturing
parameters such as solvents, dopants, coatings, biosynthetic plant
extracts, pH, temperature, and sonication duration and intensity can
influence the biological, chemical, electromagnetic, optical and physical
properties of the resultant NPs (Cao and Wang, 2011; Pandey et al., 2013;
Roduner, 2006). Various nanoparticles will aggregate in the absence of
capping agents and/or mechanical dispersion methods (Mudunkotuwa
and Grassian, 2011; Pandey et al., 2013; Pham et al., 2007; Tang et al., 2011;
Zhang et al., 2012).
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APPLICATIONS IN MEDICINE AND TOXICOLOGY

In medicine, NPs have a growing importance for pharmacodiagnos-
tics and therapy (Ahn RW, 2013; Armstead and Li, 2011; Ho and Leong,
2010; Stark, 2011; Yoo et al., 2011) as well as toxicology (Buzea et al., 2007;
Winnik and Maysinger, 2013). Exemplar medical applications of nano-
forms are the enhanced drug or natural product delivery vehicles with
increased bioavailability and cell targeting potential in infectious diseases
(Armstead and Li, 2011; Dar et al., 2013) and cancers (Al-Sadoon et al.,
2012; Chu et al., 2012; Ghosh et al., 2012; Sayed et al., 2012; Shi et al.,
2010b; Wang and Thanou, 2010).

In the emerging area of theranostics, specialized nano-drugs enable
more precise targeting of specific cells and/or organs (Vivero-Escoto et
al., 2010). For instance, magnetic nanoparticle vehicles can be activated
to release their active agent for imaging and/or treatment only after they
enter their intended specific cancer cell target (Cole et al., 2011; Ho et al.,
2011). The latter approach can take advantage of the nonlinear magnet-
ic behavior of the NPs (Geinguenaud et al., 2012). Nonlinearity of
response can derive in part from the unique magnetic or optical proper-
ties of certain NPs. For example, near infrared light-activated cell-target-
ed nanoparticles can augment photothermal ablation therapies
(Melancon et al., 2011). However, continuous wave versus nanosecond
pulsed laser stimuli can interact with nonlinear absorption processes of
gold nanospheres from plasmonic field enhancement to produce differ-
ent cell death mechanisms in the cancer cell nucleus versus cytoplasm
(Huang et al., 2010).

Overall, NPs can more readily enter cancer cells because of the
increased vascular leakiness of tumors resulting in passive and/or active
uptake processes from ligands on the NP surfaces (Ghosh et al., 2012; Sur
et al., 2010). Advantages of nano drug delivery vehicles with targeting
include a significant reductions of systemic toxicity in addition to lower-
ing total doses by orders of magnitude (Ahmad et al., 2006; Armstead and
Li, 2011; Prakash et al., 2010; Shirali et al., 2011).

In environmental toxicology, high doses of many, though not all,
nanoparticles appear to be toxic and potentially contributory to a wide
range of diseases, from asthma to autoimmune diseases or atherosclerosis
and cancer (Buzea et al., 2007; Winnik and Maysinger, 2013). Even
extremely low concentrations of nanoparticles of a given substance can
still exert toxic effects on model organisms e.g., 1 nanomolar ceria NPs on
C. elegans (Zhang et al., 2011), sublethal adverse effects from 0.02 to 0.20
nanomolar silver NPs or 0.025 to 1.2 nanomolar gold NPs on developing
zebrafish embryos (Browning et al., 2009; Lee et al., 2012b; Osborne et al.,
2012; Truong et al., 2013), or 20 nanograms/L silver NPs on juvenile
salmon (Farmen et al., 2012). Across studies, silver NPs are overall more
toxic than gold NPs, but many particle- and organism-related variables
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affect the specific findings. NP toxicity can derive from activating oxidative
stress, inflammatory, immune and even apoptotic pathways as well as geno-
toxicity in cells (Gualtieri et al., 2011; Sandberg et al., 2012; Shi et al., 2010a;
Shi et al., 2010b; Winnik and Maysinger, 2013). Plant-mediated biosynthe-
sis of silver NPs can attenuate toxicity risk in some preparations (Barua et
al., 2013). One of the major questions that this heightened sensitivity from
NPs asks is whether or not NPs violate the no-observed-adverse-effect level
(NOAEL) principle of hormesis or is the NOAEL of NPs simply down-
shifted to lower levels and modified by the specific properties of a given
NP form than with larger and bulk form particles?

HORMESIS AND NANOPARTICLES

At very low doses below the no-observed-adverse-effect level
(NOAEL), previous investigators have documented evidence that some
nanoparticles can initiate hormesis (Iavicoli et al., 2010; Nascarella and
Calabrese, 2012; Stovbun et al., 2012). Hormesis is the nonlinear dose-
response relationship in which low versus high doses of a given agent or
stressor can exert effects in opposite directions. If an agent can inhibit
function at a high dose, then the hormetic dose will stimulate function,
and vice versa. Hormesis is increasingly understood as a dynamic adaptive
response or biological plasticity of a complex living system at the level of
the whole organism to intermittent mild stressors of various categories
(Calabrese, 2013; Calabrese and Mattson, 2011; Iavicoli et al., 2010).
Types of stressor categories include physical, chemical, biological, and/or
psychological factors (Calabrese and Mattson, 2011; Iavicoli et al., 2010).
Calabrese and Mattson (2011) have used hormesis as a quantitative esti-
mate of biological plasticity.

For therapeutic applications, other researchers have proposed that
exposing organisms to intermittently-timed hormetic stimuli could shift
and shape epigenetic expression toward increased resilience against high-
er intensity stressors, disease, and aging itself (Stark, 2012; Vaiserman,
2010, 2011). Pickering et al (2013) have emphasized the importance of
spacing repeated exposures over time to permit expression of adaptive
changes to oxidative stress. The beneficial effects of hormesis may arise
from endogenous over-compensatory changes that the cell and organism
use to repair or prepare for damage from larger magnitude, adaptively
similar external threats from the environment (Stark, 2012; Van Wijk and
Wiegant, 2010; Wiegant et al., 2011).

The literature on cross-adaptation, cross-resistance and cross-sensiti-
zation includes many examples of overlapping phenomena that empha-
size the role of biological plasticity mechanisms and time-dependent
mechanisms in the organism. Pathways for the stress response networks
involve interactions of metabolic, immune, inflammatory, hormonal, and
autonomic functions. Thus, the biology of adaptation is an emergent
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property of the organism as a whole and distinct from any local chemical
effects of the exogenous agent on its specific receptors (see Figure 1).
Sub-toxic and sub-lethal stressors initiate adaptive changes that can pre-
pare the organism for future onslaughts from both the original stressor
and agents where the physical nature, but not the elicited adaptive
response repertoire of the recipient system, differs from that of the orig-
inal (Milisav et al., 2012). These latter types of responses are sometimes
termed cross-adaptation (Hale, 1969) or cross-resistance (Milisav et al.,
2012) and, in other cases, heterologous hormesis (Calabrese et al., 2007;
Van Wijk and Wiegant, 2010).

However, there is a potentially important distinction for a specific
agent and its dose or intensity level as a stressor for an individual organ-
ism. That is, some agents such as arsenic are relatively toxic and even
lethal for most organisms at what pharmacologists consider low doses for
their local effects. In that case, looking to a very low dose range might
reveal a beneficial hormetic dose range for their adaptation-stimulating
effects in most organisms. Thus, it makes sense to look for hormesis at
extremely low doses of bulk form arsenic (Raja et al., 2013) and perhaps
even lower doses of nano-arsenic trioxide (Ahn et al., 2013). Other nano-
materials such as nano-calcium hydroxyapatite may be largely benign
across a wider range of dose levels (Zhou and Lee, 2011) and/or can safe-
ly deliver nano-forms of less toxic agents for greater bioavailability and
clinical benefit than reliance on more toxic bulk form drugs (Chun et al.,
2012; Joshi and Muller, 2009; Koning and Krijger, 2007; Lanao et al., 2007;
Moulari et al., 2013; Zhao and Feng, 2010).

By analogy, for other types of more benign stressors such as exercise
in physiology, the reaction to exercise as a “stressor” will also depend on
the pre-established level of physical training and fitness of the individual.
In general, exercise is not an inherently toxic event – rather, it is part of
the physiological capacity of the organism. Nonetheless, an exercise level
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that may be moderate for a highly fit person could even be lethal for a
poorly-conditioned individual. Many doses of exercise may be fairly
benign and initiate adaptive changes consistent with training effects. The
“dose” of exercise that is beneficial will thus vary as a function of individ-
ual differences in the state of the organism at the time of the exercise.
Genetic variations (Rodriguez et al., 2012) and other environmental
parameters (Lagisz et al., 2013) can also influence individual differences
in dose-response patterns for a variety of events and agents.

Certain NPs pose an additional challenge for determination of the
no-observed-adverse-effect level (NOAEL) cut-off. In a complex nonlin-
ear paradox, lower doses of NPs can sometimes increase rather than
decrease the toxicity of a given source material as a function of the sur-
face properties of the particles themselves. That is, in the absence of sur-
face modifications to prevent spontaneous agglomeration from close
physical interactions of highly reactive NPs in concentrated colloidal liq-
uids (Bagwe et al., 2006; Clark et al., 2010; Sur et al., 2012), higher con-
centrations or doses can favor NP agglomeration. The resultant nano-
aggregates as a whole then can hide or quench the originally hyperreac-
tive surfaces of their smaller NP “parts” (Mudunkotuwa and Grassian,
2011). Consequently, the specific larger agglomerated NP form is less
toxic at a higher concentration than a lower dose of smaller, but well-dis-
persed NPs, e.g., NPs of PbS or copper.

For environmental toxicology, various forms of agitation, together
with natural dilution factors that reduce concentration in the marine envi-
ronment, for example, may disperse such agglomerates (Bourdineaud et
al., 2013; Rodrigues et al., 2013; Ruan and Jacobi, 2012; Tang et al., 2011;
Zhang et al., 2012). In such scenarios, the dispersion at a lower concentra-
tion re-exposes the hyperreactive surfaces of the smaller NPs and
enhances their toxic potential (Mudunkotuwa and Grassian, 2011).

For nanomedicine applications, it is possible to take advantage of
such issues by adding nontoxic capping agents (Singh et al., 2013) and/or
to time the use of sonication or vortexing prior to administration. Such a
strategy can determine more systematically the nanoparticle size, shape,
and surface chemistry. That is, certain capping agents, e.g., sugars or
polysaccharides, can markedly reduce metal NP toxicity. Moreover, soni-
cation will mechanically disperse any larger nanostructures that may have
formed as a result of aging, agglomeration, and/or Ostwald ripening of
the NPs in colloidal solution. In contrast, longer shelf storage over time
could permit resumption of aging effects and thermodynamically-based
development of increasingly larger nanostructures (Gautam et al., 2013;
Liu et al., 2007). Thus, recency of sonication in solution can affect exper-
imental and clinical findings (Bel Haaj et al., 2013; Liu et al., 2009;
Murdock et al., 2008; Tang et al., 2011).
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Such issues become critical for evaluating NP effects in medicine and
toxicology, when size, shape, and surface chemistry interact with dose to
determine nonlinear response patterns (Mudunkotuwa and Grassian,
2011). For example, it is possible to reduce macrophage toxicity of anti-
bacterial silver nanoparticles by coating the surfaces with chitosan (Jena
et al., 2012). Chitosan is a fibrous sugar extracted from shellfish outer
skeletons. NP characteristics also contribute to unique challenges for con-
trolling inter-experiment variability with NPs such as fullerene C60
nanoparticles (Chang and Vikesland, 2013).

What the data on nanomaterials raise for the discussion of hormesis
is an analogous need to readjust our thinking about what constitutes a
low dose, or more, precisely, a hormetic dose. Beyond the identity of the
source material, the specific sizes, shapes, and surface charges of the NPs
in air or water become significant factors interacting with dose. Hormesis
researchers may need a type of sliding scale for defining very low hormet-
ic doses where adverse events do not occur and yet beneficial adaptive
changes can develop. First, the super-potent reactivity of small nanoparti-
cles lowers the dose range for both toxic and, if relevant, therapeutic
effects from a pharmacological perspective (Armstead and Li, 2011).
Second, nanoparticles of the “same” material at a given low dose can
exert either toxic or benign effects, depending in part on the size and sur-
face reactivity of the particles (Lee et al., 2012b; Mudunkotuwa and
Grassian, 2011; Murdock et al., 2008; Winnik and Maysinger, 2013).

Third, the coating or dopants on the surfaces of nanoparticles can
also markedly change an otherwise toxic particle into a benign one or to
acquire modified actions (Das et al., 2013; McKibbin et al., 2013; Rowe et
al., 2013; Sur et al., 2012; Sur et al., 2010; Thurber et al., 2012; Tripathi et
al., 2009; Van Hoecke et al., 2011). Fourth, the state of the recipient sys-
tem cell or organism as a complex adaptive system (CAS) at the time of
exposure is another modifying variable in the intensity and even direc-
tion of the response to nano and bulk form materials (Antelman and
Caggiula, 1996; Bell and Schwartz, 2013; Browning et al., 2009; Lee et al.,
2012b; Shi et al., 2010b). Finally, NP forms of various source materials,
including animal venoms, calcium phosphate, and nanocrystalline
fullerene can exert marked toxicity for cancer cells but spare healthy cells
(Al-Sadoon et al., 2012; Harhaji et al., 2007; Shi et al., 2010b).

Thus, for nanoparticles, nonlinear hormetic responses are no longer
a function of merely specific low doses. It is necessary to take into account
the variable toxicity of a given specific nanoparticle based on its potential
to change size, and hence, surface charge and related direct effects. The
NPs then interact with individual differences in organisms’ ever-changing
dynamical state of adaptive resilience to the lower dose ranges of
nanoparticles in general. In general, the shift of the toxic dose range for
nanoparticle forms of environmental toxicants toward lower doses is also
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orders of magnitude below that for bulk forms of the “same” materials. By
extension, the no-observed-adverse-event-level (NOAEL) for nanoparti-
cles of typically toxic agents must be very low to accommodate the range
of various NP sizes and surface chemistries that may emerge within a
given environmental context, far below the more fixed NOAEL for bulk
forms of the same material (Figure 2). The potential for multiple parti-
cle-related, environment-related, and recipient-related factors to con-
tribute variance in determining the NOAEL in each study of a given
nanoparticle form make it much more difficult to define an appropriate
metric for what constitutes a “low dose” or a hormetic dose.

Dose frequency also plays a role in adaptive phenomena. Nano-
drugs persist inside cells longer than do conventional bulk form drugs
(Ahmad and Khuller, 2008; Ahmad et al., 2006; Armstead and Li, 2011;
Shirali et al., 2011). Even for bulk forms, with overly frequent dosing of
an agent, the direction of the response can reverse when the nature of
the response depends on the biological plasticity and metaplasticity
mechanisms of adaptation to the agent as a stressor rather than on the
mechanisms of its local effects on specific receptors (Abraham, 2008;
Antelman and Caggiula, 1996; Antelman et al., 1992; Antelman et al.,
2000; Pincus and Metten, 2010). Such data suggest the potential role of
pulsed versus continuous dosing in mobilizing compensatory adaptive
responses to an exogenous stressor or agent (Milisav et al., 2012; Shirali
et al., 2011; Stark, 2012).
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In addition, the nature of adaptive responses, as opposed to local lig-
and-receptor responses, is that the emergent result is increased resistance
to the original stressor and cross-resistance or cross-adaptation to other
stressors that can affect similar adaptive pathways. In pharmacology and
physiology research outside toxicology, many empirical examples of cross-
adaptation, cross-resistance and cross-sensitization are documented
(Antelman et al., 1992; Antelman et al., 2000; Hale, 1969; Milisav et al.,
2012). For instance, hypoxia cross-adapts with cold or hot temperatures
(Banti et al., 2008; Launay et al., 2006; Lunt et al., 2010; Ning and Chen,
2006); stress cross-sensitizes with amphetamine (Antelman et al., 1980);
sucrose cross-sensitizes with amphetamine or cocaine (Avena and
Hoebel, 2003; Gosnell, 2005); formaldehyde cross-sensitizes with cocaine
(Sorg et al., 2001; Sorg et al., 1998); heat shock, sodium arsenite, and cad-
mium chloride can cross-sensitize with one another depending on their
heat shock protein activation patterns (Wiegant et al., 1998).

The inference from such evidence is that an external agent at various
doses is a salient biological stressor for the cell or organism as a complex
adaptive system in addition to the local, receptor-specific actions (Bell and
Schwartz, 2013). Given the data showing the ability of sub-toxic doses of NPs
to initiate cellular stress responses, e.g., oxidative stress (Tang et al., 2010;
Winnik and Maysinger, 2013), cytokine and exosome release and other
intercellular signaling events (Andersson-Willman et al., 2012; Beloribi et al.,
2012; Demento et al., 2009; Ristorcelli et al., 2009; Zhu et al., 2012a; Zhu et
al., 2012b), there are a number of potentially fruitful, albeit challenging
directions for future research into biological mechanisms for NP-induced
adaptive and hormetic responses (Demirovic and Rattan, 2013).

UNIQUE FEATURES OF NANOPARTICLES

Nonlinearity from Nanoparticle Properties: Beyond Hormetic Dose-
Response Relationships

With nanoparticles, the nonlinearity of responses by cells and organ-
isms may involve even more complexity than with bulk form materials. In
contrast with conventional bulk forms of drugs, chemicals, herbs, and
other materials, nanoscale forms vary in their effects as a function of not
only the dose size, but also seemingly minor variations in their individual
particle or aggregate sizes, shapes, and surface charges. Trace “contami-
nants,” “dopants,” and coatings on the surfaces of nanoparticles can also
markedly change their properties, effects and level of toxicity at a given
size (Isoda et al., 2011; Kaur and Tikoo, 2012; Kumar et al., 2012; Rowe et
al., 2013; Sun et al., 2012; Sur et al., 2012; Van Hoecke et al., 2008; Wang
et al., 2012a). The environmental medium in which the NPs interact also
modify their toxic or beneficial potential (Kaur and Tikoo, 2012;
Mudunkotuwa and Grassian, 2011; Zhang et al., 2012; Zhu et al., 2006).
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More highly charged surfaces often lead to greater NP toxicity (Truong
et al., 2013; Winnik and Maysinger, 2013). As a result, nanoparticles can
evoke nonlinear response patterns from not only hormetic low dose-stimu-
latory response relationships, but also their inherent physico-chemical
properties. That is, a given dose of NPs from the “same” source material can
elicit lethal effects for one size nanoparticle, whereas the same dose at
another size does not (Browning et al., 2009; Lee et al., 2012b).

In experimental cancer studies, certain sources of nanoparticles and
certain sizes of those NPs are more toxic to cancer cells in vitro than to
normal cells, e.g., calcium phosphate NPs (Shi et al., 2010b). Enhanced
intracellular access in “leaky” blood vessels supporting cancer cells, the
inherently reactive surface properties of the NPs inside the cells, and dif-
ferent endogenous biological mechanisms may contribute to the differ-
ential cell type toxicity. Size-dependent responses and cell-specific inter-
actions are a widespread phenomenon for NPs (Harhaji et al., 2007; Jiang
et al., 2008; Kim et al., 2012; Lankoff et al., 2012).

In the real world environment, NP exposures encompass a wide range
of particle sizes and shapes. Some NPs are crudely formed from uncon-
trolled environmental events that yield, irregular sizes, shapes and prop-
erties. Early laboratory methods for making nanoparticles involved pro-
longed grinding and milling procedures from bulk source materials (top-
down methods), which make NPs with many structural irregularities and
defects (DeCastro and Mitchell, 2002). Contemporary manufactured
nanoparticles necessarily attain more consistent and defect-free shapes
and sizes with more precise technological procedures like photo-lithogra-
phy or bottom-up template synthesis methods (Ju-Nam and Lead, 2008).

In the manufacturing realm, nanotechnologists are also now using
plants and other more natural biological agents to biosynthesize “green”
silver and gold nanoparticles (Daisy and Saipriya, 2012; Das et al., 2013;
Hudecova et al., 2012; Snitka et al., 2012; Suriyakalaa et al., 2012).
Biologically synthesized silver and gold NPs have the advantage that the
residual amounts of the plant extract adsorb onto the final NP surface
and can enhance therapeutic effects while reducing toxicity (Tripathi et
al., 2009; Umashankari et al., 2012). Some investigators include plant
extracts, phytochemicals and antioxidants in their manufacturing meth-
ods to change surface properties and thereby reduce the cellular toxicity
potential of certain metal NPs, e.g., silver NPs (Du et al., 2012; Hudecova
et al., 2012; Lee et al., 2012a; Mittal et al., 2013; Osborne et al., 2012; Park
et al., 2012; Suriyakalaa et al., 2012; Tournebize et al., 2012).

For more general sustainable NP manufacturing, natural plant mate-
rials such as English ivy, certain native plants from India, the traditional
Chinese herb Cuscuta chinensis, glycyrrhizic acid from radix glycyrrhizae,
guar gum, and rice husk also can also release their own organic nanopar-
ticles of various sizes under appropriate conditions (Barve and
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Chaughule, 2013; Burris et al., 2012; Im et al., 2011; Lenaghan et al., 2013;
Salavati-Niasari et al., 2012; Soumya et al., 2010; Wang et al., 2013; Yen et
al., 2008). Beyond plant sources, a combination of ball-milling and ultra-
sound can reduce other organic material sources such as waste eggshells
into calcium carbonate nanoparticles (Hassan et al., 2013).

A rationale has been that all of the reagents used in making NPs will
adsorb onto the large charged surface area to one degree or another and
serve to “dope” or coat and thus modify the primary silver, gold, or sili-
con NP. Different solvents at different concentrations, for example, result
in NPs of the “same” material with different characteristics and sizes
(Abbasi and Morsali, 2012; Cao and Wang, 2011; Rao et al., 2005; Yang et
al., 2011; Yoo et al., 2006). As a result, the adsorbed materials can change
the surface charge and properties of the NPs and thereby, their biologi-
cal, therapeutic or toxic potential (Lu et al., 2011; Sur et al., 2010). The
use of nontoxic or less toxic natural source reagents and materials could
reduce toxic waste from NP manufacturing and potentially improve safe-
ty of nanomedicine products.

Studies on manufacturing also highlight the need for scrutiny of sam-
ple preparation and analytic methods in NP studies (Chikramane et al.,
2012). It is important to keep in mind that the precise laboratory condi-
tions in which researchers examine effects of a nanoparticle preparation
may influence the findings. In addition to any added solvents and
reagents, basic manufacturing parameters such as intensity, duration, and
the timing and extent of sonication will affect dispersion of nanoparticles
that otherwise aggregate into larger particles with aging (Abbasi and
Morsali, 2012; Murdock et al., 2008; Ruan and Jacobi, 2012; Song et al.,
2012; Tang et al., 2011). Variations in temperature and pH will also mod-
ify the properties of the nanoparticle samples in solution (Abbasi and
Morsali, 2012; Rao et al., 2005). Interactions with serum albumin lead to
differential agglomeration and sizing of nanostructures during biological
experiments (Song et al., 2012; Tantra et al., 2010).

Even making reliable NP concentrations for research purposes is
potentially confounded by variations in additional nanostructures that
might get into solution from sonication or vortexing agitation of the mate-
rials in liquid within different glassware or polymer containers (Betts et al.,
2013; Ives et al., 2010; Liu et al., 2012). Taken together, the data indicate
the possibility of meaningful interactions between dose size, particle size,
sample preparation and testing parameters, and state of the cells or organ-
ism at the time of administration in the expression of specific effects.

Quantum Properties of Nanoparticles

Smaller NP sizes also introduce quantum mechanical considerations
into the problem for trying to evaluate nonlinear dose-response relation-
ships in a conventional cause-effect medical model (Berec, 2012; Gupta
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and Wiggers, 2011; Roduner, 2006; Yao and Hughes, 2009). For example,
in nano-optics and nano-electronics, the smallest NPs (quantum dots)
exhibit the ability to manifest macro quantum entanglement (Berec, 2012;
Yao and Hughes, 2009), quantum coherence (Chudnovsky and Friedman,
2000; Hatef et al., 2012), and quantum confinement (Gupta and Wiggers,
2011; Hannah et al., 2012; Kleps et al., 2010) phenomena. Some nan-
otechnologists take advantage of quantum confinement, for instance, to
generate tunable quantum dot NPs with specific optical properties (Biju et
al., 2010; Kang et al., 2011; Luther et al., 2011; Troia et al., 2009).

Few medical researchers consider the implications of quantum effects
of NPs on biological function (Stovbun et al., 2012). However, some inves-
tigators are using the ability of quantum confinement of electrons by dif-
ferent sizes of small NPs (quantum dots, with their atom-like properties)
to yield different wavelength colors inside cells for specialized diagnostic
imaging methods (Browning et al., 2009; Huang et al., 2012; Lee et al.,
2012b; McGuinness et al., 2011; Shalchian et al., 2005; Wang and Chen,
2011). Scientists working at the nanoscale point out the fact that biologi-
cal processes occur at the nanoscale and sub-nanoscale level. Lloyd
recently noted, for instance: “Nature is the great nano-technologist. The
chemical machinery that powers biological systems consists of complicat-
ed molecules structured at the nanoscale and sub-nanoscale. At these
small scales, the dynamics of the chemical machinery is governed by the
laws of quantum mechanics” (Lloyd, 2011).

The literature contains only a few papers on the role of quantum
physics in biological systems (Davies, 2004). Given limited evidence of the
quantum mechanical properties of nanoparticles and their possible role
in biological effects of NPs, much research lies ahead to understand the
full potential effects of nanoparticles on living organisms. Nonetheless, at
least some smaller sized NPs may act within the worlds of both conven-
tional physics and quantum mechanical phenomena, making characteri-
zation of their dose-response relationships and mechanisms even more
difficult to determine in a reproducible manner.

Still, it is important to realize that the biological effects of nanoparti-
cles may change the scientific rules by which medical studies of nanopar-
ticles are done. Clinical research on NPs could differ in design and even
reliability from those for bulk forms of materials. The atom-like properties
of very small nanoparticles may force quantum physics into the discussion
of their therapeutic and toxicological effects in biology and medicine.

Interactions of NPs with the Organism as a Complex Adaptive System or
Network

In the laboratory, technological advances now permit following the
random walk of single nanoparticles through an individual organism,
revealing the limitations to using averaged or ensemble data for evaluat-

Nanoparticles and Hormesis in Complex Adaptive Systems

213



ing specific nanoparticle effects (Browning et al., 2009; Lee et al., 2012b).
The latter issue of individual variability in NPs and individual differences
in responses of each organism may hamper efforts to rely on the pro-
posed average magnitude and response distributions for assessing horme-
sis from nanoparticles (Nascarella and Calabrese, 2012). Awareness of
these factors, however, can reduce the risk of overly broad assumptions or
generalizations about the effects of NPs in living systems, including rela-
tive to hormesis.

So far, this paper has alluded to the complex nonlinear dynamics and
network organization of the organism as another factor in modifying the
nature, magnitude and direction of nanoparticle effects (Sugarman et al.,
2013). What are the implications of considering the interaction of the
nanostructured material with an individual organism? In his text,
Introduction to Nanoscience, Lindsay (Lindsay, 2010) commented:
“Nanoscience is where atomic physics converges with the physics and
chemistry of complex systems.”

Current thinking suggests that the adaptive response nature of
hormesis is a manifestation of biological plasticity (Calabrese and
Mattson, 2011). As a result, the dose-response observations reflect emer-
gent interactions of a given mild stressor or low dose agent with a specif-
ic organism in a particular dynamic state, modified by genetics and past
experiences. Biological metaplasticity, or the plasticity of plasticity can
reverse directionality of responses as a function of past adaptations
around a set point compatible with maintaining homeostatic balance
(Abraham, 2008; Antelman and Caggiula, 1996). Moreover, for in vivo
studies, NPs may yield very different findings from in vitro experiments
(Clift et al., 2011; Lu et al., 2011). Using intact organisms may ultimately
be necessary to understand when and how NPs might cause hormesis and
other nonlinear responses, e.g., stochastic resonance (Chen et al., 2012;
McDonnell and Abbott, 2009).

Complete organisms and intact cells are each complex adaptive sys-
tems (CAS) at different levels of scale. CASs are interconnected, interac-
tive and interdependent networks of self-organized components. The spe-
cialized components in turn generate emergent properties at the higher
levels of organization not seen in the individual parts (Pincus and
Metten, 2010). Furthermore, a CAS can change behaviors over time at
different time scales, with a range between order and chaos that adapts
nonlinearly to changes in the environment.

The result observed can vary, revealing degrees of resilience from the
capacity for adjusting intrinsic flexibility and stability in the behaviors of
the complex system. The dynamic self-organized “goal” for a CAS is to
optimize the organism or cell’s fitness within a given environment to the
extent possible within the current state and meta-flexibility of the system
(Pincus and Metten, 2010). The nature, magnitude, and direction of the
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change can be difficult to predict in a CAS, especially at critical points of
dynamical instability (Hollenstein, 2007; Malarczyk et al., 2011; Sugarman
et al., 2013). In addition, Figure 3 illustrates some time-dependent vari-
ables in a living CAS, e.g., developmental state of the recipient organism
and the frequency of repeated exposures that can influence the adaptive
changes and even the direction of the observed responses, apart from the
dose itself.

Some researchers in nonlinear dynamical systems (NDS) propose
that disease and aging reflect losses of complexity in the dynamics of the
organism (Costa, 2002, 2007; Costa et al., 2002; Fredrickson and Losada,
2005; Goldberger et al., 2002; Losada, 1999; Losada and Heaphy, 2004).
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FIGURE 3A. Time-Dependent Interactions of Host and Environment that Can Affect the Initiation
and Direction of Responses in a Nonlinear Dynamical System such as a Living Organism.
Developmental phase transition in an adolescent human being can destabilize system dynamics and
lead to subsequent self-reorganization of interpersonal interaction dynamics over time. Reprinted
with permission (Hollenstein, 2007). 



With regard to high doses of nanoparticles and other small particles from
air pollution, many believe that such toxic level exposures promote dis-
ease, as reflected in a loss of complexity in physiological measures such as
heart rate variability (Shannahan et al., 2012).

However, studies on the effects of lower, subtoxic NP doses reveal
individual variability in the effects of the agent on different organisms
receiving the “same” exposure. Stressing a CAS and observing how it
responds to the stressor in spatially and temporally remote areas of func-
tion can reveal the larger capacity for resilience of the individual organ-
ism (Bar-Yam, 1997; Bar-Yam and Epstein, 2004). Cause-effect relation-
ships in CAS tend to be indirect rather than direct. Overwhelming inten-
sities of stress can completely disrupt a complex biochemical network, for
instance, whereas lesser levels of stress may simply induce a self-reorgani-
zation of function to cope with the effects (Mihalik and Csermely, 2011;
Szalay et al., 2007)(Figure 4).
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FIGURE 3B. Overly frequent repetitions of a low dose environmental stressor (e.g., experimental
cocaine pretreatments in an animal during a sensitization protocol study of brain striatal dopamine
efflux evoked by eliciting dose of cross-sensitized amphetamine) leads to reversal of direction in
observed responses over consecutive repetitive exposures. Reprinted with permission (Antelman et
al., 1997). 



For instance, with silver NP exposures at sub-lethal doses, some devel-
oping zebrafish organisms remain healthy whereas others develop defor-
mities (Lee et al., 2012b). Those with the deformities show an NP size-
dependent effect, with larger numbers of larger versus smaller size silver
NPs accumulating inside the surviving deformed versus healthy individu-
als, at the same given molar concentration. Such data support the likely

Nanoparticles and Hormesis in Complex Adaptive Systems

217

FIGURE 4. Effects of Different Levels of Stress on Functional Network Organization of a Complex
Adaptive System. Reprinted with permission (Szalay et al., 2007). Note: Solid and dotted lines represent
strong and weak (high and low affinity) links, respectively.



interactions of subtoxic nanoparticle doses and sizes with the state of the
organisms at the time of exposure. The dynamical state of the individual
CAS here would translate into the variable ability of blood vessel integri-
ty and cell membranes either to allow or to block entry of the damaging
larger-sized nanoparticles inside the cells, e.g., (Shi et al., 2010b).

In the therapeutic realm, harnessing low doses of certain sized
nanoparticles as hormetic stimuli may be useful. It is instructive to look
at research on using low level discrete, well-timed stimuli to mobilize
widespread changes in function of the overall organism. For example,
adding a low level, subsensory noise applied to the feet of elderly indi-
viduals can improve the complexity of sway fluctuations in their postural
balance (Costa, 2007). Adding noise in the latter case enhances the abil-
ity to detect otherwise age-weakened sensory signals within the organism.
On the other hand, applying discrete pulsed electrical stimuli with pre-
cise magnitude and timing for the individual’s diseased state (i.e., which
is emergent biological “noise”) can disrupt and normalize cardiac
arrhythmias or experimental epileptic seizure activity in the brain
(Coffey, 1998; Garfinkel et al., 1992; Schiff et al., 1994).

One underlying theory for the clinical benefits of introducing a small
or weak signal within a larger endogenous noise in a CAS is stochastic res-
onance (SR) (Casado-Pascual et al., 2003; Czaplicka et al., 2013; Kelty-
Stephen and Dixon, 2013; Korn and Faure, 2003; Krawiecki et al., 2000;
Magalhaes and Kohn, 2011; McDonnell and Abbott, 2009; Pinamonti et
al., 2012; Torres and Ruiz, 1996). SR is a phenomenon which involves the
ability of a small signal to exert noise-enhanced amplified effects when
given in the background of the much larger noise to a nonlinear complex
system (Figure 5) (McDonnell and Abbott, 2009).

Certain nanoparticles, e.g., carbon nanotube transistors, can evoke
this type of noise-amplified response to a weak signal in a non-living com-
plex system (Lee et al., 2006). In biological systems, previous studies have
demonstrated stochastic resonance in sensory systems. SR is involved, for
example, in crayfish detection of incident pressure waves from predators
as well as in human visual perception and balance control (Moss et al.,
2004). To further explore SR-related phenomena, Lee et al (2010)
showed coherence resonance or self-synchronization at an optimal noise
level, in transport of single ions through the interior of a 500 micrometer
long carbon nanotube. The latter observations involved increases in
throughput of the nanopore by a factor of 100 (Lee et al., 2010).

SR is a testable hypothesis as one way in which a pulsed dose of a
salient, low dose agent or nanoparticle might initiate the cascades of
amplified biological signaling reported in hormesis (Calabrese, 2013).
The “noise” in an adaptive living system might be a pattern of dysfunctions
manifesting as a disease, toxicity, or aging (Soti and Csermely, 2007). Then
the therapeutic strategy could be either (a) to add noise to enhance sen-

I. R. Bell and others

218



sory detection capacity in an aging individual (Costa et al., 2007) or (b) to
introduce a salient mild hormetic signal into the pre-existing systemic
noise of disease to trigger a reversal of direction toward health (Stark,
2012; Torres and Ruiz, 1996; Van Wijk and Wiegant, 2011; Yu et al., 2013).

SR may play a role in the aging process and in anti-aging interven-
tions. Soti and Csermely (2007) have proposed that aging leads to
increased noise in the functional cellular biochemical networks. The
noise grows via cumulative damage to weak biochemical network links
involving chaperone proteins such as heat shock proteins. Both aging and
disease can induce a loss of complexity in the nonlinear dynamics of a
complex adaptive system across levels of organizational scale, including
cell systems, physiological systems, and whole organisms (Costa, 2007;
Costa et al., 2005; Fredrickson and Losada, 2005; Goldberger, 1996;
Goldberger et al., 2002; Hollenstein, 2007; Pincus and Metten, 2010; Soti
and Csermely, 2003, 2007).

However, well-timed mild hormetic stressors from certain nanoparti-
cles in low doses and certain particle sizes could serve as one type of small
salient SR signal embedded in the larger noise to trigger beneficial recov-
ery of complexity in the system (Stark, 2012; Sugarman et al., 2013).
Modulation of heat shock proteins offers a potential biological mecha-
nism (Soti and Csermely, 2006) by which to reverse age- or disease-relat-
ed loss of complexity in the adaptive networks of cells. In hormesis
research, one intervention strategy involves postconditioning hormesis to
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FIGURE 5. Nature of Stochastic Resonance (SR) as a Model Nonlinear Process for Noise-Enhanced
Small Signals. Typical SR Curve of Output Performance versus Input Noise Magnitude for Complex
Systems Capable of Stochastic Resonance. Reprinted under the Creative Commons License with
Attribution (McDonnell and Abbott, 2009). 



elicit therapeutic effects in heat shock protein activation patterns from
mild (low dose) hormetic environmental stimuli (Van Wijk and Wiegant,
2010; Wiegant et al., 2011). Previous studies have already shown the
capacity of various nanoparticles at toxic doses to modulate heat shock
protein activation patterns (Farmen et al., 2012; Foldbjerg et al., 2012;
Lim et al., 2012; Richert et al., 2012; Siddiqi et al., 2012; Zhao et al., 2012).

It is not always necessary to use low doses of the same specific stressor
that may have caused deterioration. In the adaptive stress response net-
works, the phenomenon of cross-adaptation or cross-resistance (Hale,
1969; Milisav et al., 2012) could permit selection of a heterologous, cross-
adapted stressor to serve as the hormetic stimulus. Newer evidence suggests
that low doses of certain salient cross-adapted nanoparticles could act as
such postconditioned hormetic stressors (Bell and Schwartz, 2013). It may
also be possible, as Vaiserman has proposed, to use intermittent mild
hormetic stressors to initiate preconditioned hormesis and adaptive
changes for preventive purposes (Vaiserman, 2010, 2011). Nonetheless,
identifying the optimal conditions for beneficial shaping of health- and
longevity-promoting exposures remains a challenge (Pickering et al., 2013).

For low doses of small nanoparticles to act via stochastic resonance,
e.g., in hormesis, they would need to take advantage of endogenous
amplification processes possible within the individual as a nonlinear com-
plex adaptive system (McDonnell and Abbott, 2009). Notably, the NPs
would need to arrive as a discrete properly-timed, pulsed low intensity sig-
nal rather than at continuous dosing levels (Antelman et al., 2000;
Casado-Pascual et al., 2003; Kelty-Stephen and Dixon, 2013). While spec-
ulative, the concept of stochastic resonance in complex adaptive systems
could add a new layer of discovery to advance our understanding of the
circumstances in which the effects of hormesis might be utilized for pre-
vention or treatment of disease.

CONCLUSIONS

In conclusion, for the therapeutic application of hormesis with NPs
(Iavicoli et al., 2010; Nascarella and Calabrese, 2012), additional consid-
erations beyond traditional dose explanations likely come into play to
understand nonlinear responses. Numerous interacting factors related to
nanoparticle size, shape, and surface charge, in addition to the material
composition and low dose, determine the net effects of particular
nanoparticles in a given study. The NPs then interact with individual dif-
ferences in the dynamical state of the cells and organisms as complex
adaptive systems to generate emergent nonlinear effects.

The time-dependent, multifactorial and individualized nature of
adaptive phenomena raises significant questions about the most appro-
priate experimental designs on NP hormesis. Careful characterization of
nanoparticles used in a given study and the pre-treatment dynamical state
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of the individual recipient organisms or cells may lessen the risk of gen-
erating confusing and even irreproducible findings in this field (Chang
and Vikesland, 2013; Vijayaraghavan and Nalini, 2010; Xia et al., 2009).
Even relying on averaged versus individualized data may be misleading
(Browning et al., 2009; Huang et al., 2012; Lee et al., 2012b).

Implications of the available literature for future studies on NPs and
hormesis include:

• Because of enhanced biological potencies of NPs, it is necessary to look
for significant down-shifting to the left along the x-axis for dose levels
below the no-observed-adverse-effect-level (NOAEL) where hormesis is
more likely to occur. That is, in some cases, hormetic doses of some NPs
may sometimes occur at levels below 1 nanomolar concentration. How-
ever, since NP size and surface chemistries can vary in a given environ-
ment, the cut-off levels for their direct and indirect therapeutic and/or
toxic effects may also vary accordingly.

• Because of the potential interactions of small particle size and low dose
with the state of the recipient complex adaptive system, developing
multifactorial models for biological plasticity mechanisms of hormesis
may be particularly important with nanoscale materials.

• For therapeutic applications of hormesis using NPs, dosing regimens
may need to involve discrete pulsed rather than continuous administra-
tion of the low doses of specific sized NPs in order to take advantage of
biological signaling and nonlinear stochastic resonance. Timing of NPs
can affect the nature and direction of the response (Hossu et al., 2010;
Jonasson et al., 2013; Vesterdal et al., 2010). The amplified effects of small
pulsed signals in the context of a larger noisy signal can produce large
magnitude, clinically significant change in an individual as a complex
adaptive system (Costa, 2007; Ichiki and Tadokoro, 2013; McDonnell
and Abbott, 2009; Pinamonti et al., 2012; Soti and Csermely, 2007).

The past decade has seen an explosion of research and discovery in
nanoscience, nanotechnology, and nanomedicine. The potential of inter-
acting therapeutic nanoparticles with hormetic dose treatment strategies
is largely unexplored. Tools from systems biology (Abu-Asab et al., 2011),
network analysis (Farkas et al., 2011) and nonlinear dynamical systems
(Pincus and Metten, 2010) may facilitate this direction for future
research. The evidence supports the importance of exploratory and
hypothesis-driven studies in this area.
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